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Abstract. Generalized multifractal formalism is used to study singularity spectra of strongly inhomoge-
neous multifractals characterized by coarse-grained probability measures with zero minimal and/or infinite
maximal Hölder exponents. Due to involving two additional types of scaling indices, the generalized formal-
ism is shown to be able to describe complex multifractal objects by families of bivariate spectra rather than
familiar single spectra of singularity strengths of one type, providing a more complete and adequate char-
acteristics of such objects. It is proved that the families of extended singularity spectra can reveal unusual
forms with many maxima, reflecting complex scaling structures of strongly inhomogeneous multifractals.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.-a Thermodynamics –
64.10.+h General theory of equations of state and phase equilibria – 68.35.Rh hase transitions and critical
phenomena

1 Introduction

Coarse-grained probability measures determined for com-
plex objects undergo usually simple scaling laws pi ∼ ` ᾱii ,
i = 1, 2, ..., with `i being the length scale of ith piece
of a given object and ᾱi denoting the respective Hölder
exponent [1]. In various contexts, there appear, how-
ever, multifractal objects, for which ᾱmin = 0 and/or
ᾱmax = ∞ as max `i → 0. Evidently, when applying the
traditional multifractal formalism [1] to complex measures
with ᾱmax = ∞, one obtains singularity spectra f(ᾱ) of
an unusual, left-sided shape [2,3] (no matter whether the
space partitioning is uniform or not). The disappearance
and/or the divergence of some values of Hölder exponents
as the limit max `i → 0 is approached suggest that lo-
cal probability measures scale according to pi ∼ `αiwi(`i)i ,
where αi, i = 1, 2, ..., denote scale-independent singular-
ity strengths, wi(`i) are functions of `i, such that 0 ≤
wi(`i) ≤ ∞ and maxwi(0)/minwi(0) = ∞. Then, within
the conventional multifractal formalism, all singularities
αi associated with the set {wi(0) = 0} are converted to
a single value ᾱ = 0 and/or all singularities αi associ-
ated with the set {wi(0) = ∞} are converted a value
ᾱ = ∞. Thus, in cases of strongly inhomogeneous mea-
sures, the traditional multifractal formalism cannot char-
acterize properly entire sets of singularity exponents αi. It
has recently been proved that, if such measures are sup-
ported by multifractal sets, then these sets can adequately
be characterized by introducing, in general, two additional
kinds of scaling exponents [4]. Accordingly, the strongly
inhomogeneous local measures can then be assumed to
satisfy the relation pi ∼ `αiβiγi with βi and γi being two
additional indices and ` = min `maxwi(`i)

i . The new scaling
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exponents are defined as βi = lim
`i→0

[wi(`i)/maxwi(`i)] and

γi = lim
`i→0

[ max{wi(`i)} ln `i/ ln ` ]. Clearly, these singular-

ity strengths are well defined only if the respective limits
exist as ` → 0. Consequently, the exponents αi can be
interpreted as strengths of inhomogeneities of local prob-
abilities pi with respect to scales `wi(`i)i . The indices βi
take values from a unit interval [0, 1] and reflect the vari-
ability of wi with regard to maxwi. Finally, the exponents
γi describe the variability of `i, i.e., the they describe
the nonuniformity of covering of supports of probability
measures. Complex structures of underlying multifractal
sets (i.e., supports of probability measures characterized
by particular triples of scaling exponents αi, βi, and γi)
can be investigated using an extended multifractal formal-
ism, introduced recently [4]. In general, this formalism in-
volves singularity strengths of the three types, in contrast
to the traditional formalism, which uses only one type of
singularities.

In the present paper, the generalized formalism is ap-
plied to study singularity spectra of a probability mea-
sure being a superposition of binomial submeasures and
the Gibbs distribution of energy levels of one-dimensional
Ising model. Both the measures are associated with
strongly inhomogeneous objects (in the sense specified
above), but the first measure is constructed using a
nonuniform space partition, while the second one is deter-
mined for a uniform coarsegraining. Thus, for the latter
measure, the exponents γi are all equal, and, in this case,
the generalized formalism involves only scaling indices αi
and βi. It will be shown that singularity spectra deter-
mined for strongly inhomogeneous objects can have not a
familiar simple concave form and can even display many
maxima.
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2 Generalized singularity spectra

The extension of the conventional multifractal formalism
consists in using two additional filtering variables, conju-
gated to the scaling exponents βi and γi [4]. The corre-
sponding generalized partition function is given by

Γn(q, r, s) =
n∑
i=1

pqi `
βiγir+γis (1)

with the variables q, r, s ∈ (−∞,∞) and ` = min ¯̀
i, where

¯̀
i = `

maxwi(`i)
i . As ` → 0 (and n→∞), the function (1)

is expected to satisfy the scaling relation Γn(q, r, s) ∼
`σ(q,r,s), while the number of space boxes for which lo-
cal probabilities are described by indices αi ∈ [α, α+ dα],
βi ∈ [β, β + dβ], and γi ∈ [γ, γ + dγ] is assumed to scale
as N(α, β, γ) ∼ `−g(α,β,γ). Then, making use of the triple
Legendre transformation [4], one has

σ(q, r, s) = min
α,β,γ

[ψq,r,s(α, β, γ) ], (2)

ψq,r,s(α, β, γ) = αβγq + βγr + γs− g(α, β, γ), (3)
{α}{β}{γ} = ∂qσ(q, r, s), (4)
{β}{γ} = ∂rσ(q, r, s), (5)
{γ} = ∂sσ(q, r, s), (6)

where ∂x = ∂/∂x, and {α}, {β}, {γ} symbolize functions
α(q, r, s), β(q, r, s), γ(q, r, s), respectively, such that they
fulfill the condition (2).

The generalized singularity spectra f(α, β, γ) are de-
fined by the scaling relation N(α, β, γ) ∼ ˜̀−f(α,β,γ) with
˜̀ = min `i. Thus, the spectra f are related to the func-
tion g by

f(α, β, γ) =
ln `
ln ˜̀g(α, β, γ). (7)

Since ln `/ ln ˜̀→ 0 as `→ 0, the function g(α, β, γ) must
tend to zero (for all values of the exponents α, β, and γ)
when `→ 0, in order to the singularity spectra f(α, β, γ)
could remain finite in the limit ` → 0. This does not
mean, however, that ψq,r,s(α, β, γ) and thereby σ(q, r, s)
depend on ` as the limit ` → 0 is approached. Indeed,
as ` → 0, these quantities are dominated by respective,
`-independent products of scaling exponents and filtering
variables.

The use of the above approach is based on determining
the generalized partition function (Eq. (1)). Essentially,
this quantity can be calculated when the functions wi(`i),
i = 1, 2, ..., or at least their values at particular scales
`i, i = 1, 2, ..., are known. In cases when scaling proper-
ties of strongly inhomogeneous measures are not explicitly
known (i.e. in cases of measures obtained experimentally),
the functions wi(`i) as well as the exponents αi, βi, and
γi cannot be determined in a unique manner, as they can
only be obtained with an accuracy to multiplicative con-
stants. (Clearly, products αiwi(`i) are defined in a unique
way.) However, the arbitrariness in choosing the multi-
plicative constants can be removed by adopting a sim-
ple, general method of determining the functions wi(`i)

(then, the exponents αi, βi, and γi are fixed). In the case
when ᾱmax =∞, it starts with finding the maxwi(`i). In
general, functions wi(`i) and exponents αi cannot be ob-
tained by investigating probability measures pi at different
partition levels, since space coverings for these measures
are redefined as the partition stage changes. Nevertheless,
one can assume that the singularity αi associated with
min pi (i.e., with the maximal singularity connected to
maxwi(`i)) does not change significantly (saturates) as
the partitioning level increases. Then, one can determine
the product max [αiwi(`i)] at different, high partition lev-
els, and the maxwi(`i) as well as the corresponding sin-
gularity maxαi can be obtained using the condition that
maxwi(1) = 1. Consequently, for cases of ᾱmax = ∞, the
remaining functions wi(`i) can be expressed as

wi(`i) = [maxwi(`i)]xi(`i) (8)

with 0 ≤ xi ≤ 1. For small `i, the index xi(`i) is approxi-
mately given by

xi ≈
ln | ln pi| − ln | ln(`i)|

ln[maxwi(`i)]
· (9)

Clearly, this relation is not exact due to a contribution
of αi to pi, as well as due to the existence of a constant
factor c in the scaling law pi = c`

αiwi(`i)
i . It should be

pointed out that some of the functions wi(`i), i = 1, 2, ...,
can be identical, and then a given function wi(`i) can be
connected with different singularity strengths. Contribu-
tions of these singularities to xi(`i) can roughly be elimi-
nated by approximating xi(`i) for a given space covering
by discrete values:

xi(`i) ≈ riε (10)

with ri being a natural number, such that xi(`i) ≥ riε,
xi(`i) < (ri + 1)ε, and with ε given formally by

ε ≈ ln(maxαi)− ln(minαi)
ln[maxwi(`i)]

where maxαi and minαi are maximal and minimal, re-
spectively, values of αi associated with wi(`i). It follows
from the last relation that ε � 1 for small `i, i = 1, 2, ....
In turn, when αmin = 0, the function minwi(`i) can be
expressed as [3]

minwi(`i) = − ln | ln `i|
ln `i

· (11)

If additionally ᾱmax <∞, the remaining functions wi(`i)
can be written now in the form:

wi(`i) = [minwi(`i)]yi(`i), (12)

where 0 ≤ yi(`i) ≤ 1. When `i → 0, one obtains

yi(`i) ≈
ln | ln pi| − ln | ln `i|

ln[minwi(`i)]
· (13)
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By analogy with (10), this index can be estimated for a
given `i using the relation

yi(`i) ≈ r′iε′, (14)

where r′i denotes a natural number, such that yi(`i) ≥ r′iε′,
yi(`i) < (r′i + 1)ε′, and ε′ is given by

ε′ ≈ ln(maxαi)− ln(minαi)
ln[minwi(`i)]

·

Note that ε′ � 1 for small `i, i = 1, 2, .... Consequently,
functions wi(`i), i = 1, 2, ..., can be found using equa-
tions (8–10) in the case of ᾱmax = ∞, or using equa-
tions (11–14) in the case of ᾱmin = 0, ᾱmax = ∞, with
suitably chosen increments ε or ε′, respectively. Obviously,
any reliable results obtained for a given space covering
should not vary strongly as ε or ε′ change. This condi-
tion enables one to adjust the most appropriate values of
ε and ε′.

It should be noted that, within the conventional multi-
fractal formalism, the one-dimensional counterpart ψq(α)
of the function ψq,r,s(α, β, γ) is assumed usually to be
convex (downward) in α for all values of the filtering
variable q. Indeed, the function ψq(α) has proved to be
convex for many probability measures and, even, its con-
vexity property has explicitly been shown for binomial
measures [1]. However, there exist multifractal objects for
which ψq(α) is not convex for all q, and, thereby, the re-
sulting singularity spectra are not concave for all values
of α (cf. Ref. [5]). In general, the function ψq(α) can have
many minima, which can become one after the other an
absolute minimum as q varies. Then, the position of the
absolute minimum (i.e., the value of α at which this min-
imum occurs) can change discontinuously, indicating the
existence of phase transitions. Accordingly, the singularity
spectra can possess many maxima and can reveal forms of
envelopes of simple, concave functions.

As will be seen below, the function ψq,r,s(α, β, γ) de-
termined for strongly inhomogeneous measures can also
exhibit complex shapes with many minima. In such cases,
the minimum in equation (1) denotes an absolute mini-
mum, whose location changes continuously as q, r, s vary
within some regions in the space of these variables, and
change in a discontinuous way as borders of the regions
are crossed.

3 Superpositions of multifractal measures

Define a probability measure µ =
∑m
k=1 µ(k) with the

submeasures µ(k) constructed by using a multiplicative
process with probability rescalings p1,k = p2,k = 1/2k,
k = 1, 2, ...,m, and with corresponding length rescalings
`′ = 1/3, `′′ = 1/9 (identical for all submeasures). Con-
sider now a measure µ′, defined as a normalized measure µ.
Recent studies of multiscaling properties of the superposi-
tion of these binomial submeasures have been shown that
the measure µ′ reveal strongly inhomogeneous character,

with ᾱ→∞ as `→ 0 [4]. The generalized partition func-
tion for µ′ can written as (cf. Ref. [4])

Γm,n(q, r, s) =
m∑
k=1

n∑
i=0

(
n

i

)
pqk `

βkγir+γis, (15)

where pk = cm,n2−kn, k = 1, 2, ...,m, denote local proba-
bilities, normalized at each partition stage n (the same for
all submeasures µ(k)), with cm,n =

(
1− 1

2n

)
/
(
1− 1

2mn

)
being the normalization constant, and the length scale
` = 9−mn. Owing to a special definition of the measure µ′,
all local probabilities are identical for each of the submea-
sures µ(k), but probabilities associated with different sub-
measures are different (pk 6= pk′ if k 6= k′). However, at a
given partitioning level n, each of the submeasures µ(k),
k = 1, 2, ...,m is supported by 2n segments of sizes `i,
i = 0, 1, ..., n (note that there exist only n + 1 different
length scales). It should be pointed out that, although
each of the submeasures µ(k) is uniform at each of the
partitioning process, singularity strengths associated with
local probabilities pk, k = 1, 2, ..., are, in general, different,
due to nonuniformity of the support of each of the submea-
sures µ(k). The functions wi introduced to describe strong
measure inhomogeneities are in this case functions of k
rather than functions of `i, and are all identical for each
of the submeasures, i.e., wi = w(k) for i = 0, 1, ..., n. Con-
sequently, the scaling relation for the local probability as-
signed to ith segment belonging to the support of µ(k) can
be expressed as pk ∼ `αk,iw(k)

i with `i =
(

1
3

)n+i
. The func-

tion w(k) can be determined by assuming that w(1) = 1,
and by assuming that the exponents αk,i are independent
of k in the limit n → ∞ (this guarantees that the range
of values of αk,i remains nonzero and finite when m is a
function (increasing) of n, and when n→∞). The above
conditions implies that w(k) = k. Then, as can easily be
verified, the set of exponents αk,i becomes indeed identi-
cal for all submeasures µ(k) as n→∞, the indices βk are
the same for all i and for all construction stages of a given
submeasure, while the set of singularities γi is identical for
every measure µ(k). Thus, for large m and n, local scaling
properties of the measure µ can be described by triples of
exponents αk,i, βk, and γi, k = 1, 2, ...,m, i = 0, 1, ..., n.

According to (7), the singularity spectra for the mea-
sure µ are given by

f(α, β, γ) = mg(α, β, γ). (16)

These spectra can easily be investigated by changing one
or two of the filtering variables and by keeping remaining
variables or variable constant. For particular values of the
filtering variables or variable, one then obtains families of
multifractal spectra. Using (2–7, 15), and (16), the spectra
f(α, β, γ) have been determined for m = 10 and n = 10.
They are shown in Figure 1 as functions of α, for varying q,
for r taking various constant (for each spectrum) values,
and for s = 0. It is seen that, for each r, f is a concave
function of α, and that the spectra f obtained for vari-
ous r are enclosed between two concave envelopes. The
bottom envelope is determined at the same minimal and
maximal values of q (qmin � 0, qmax � 0), for all curves.
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Fig. 1. Singularity spectra f(α, β, γ) vs. α for s = 0 and for
various values of r, ranged from −4 (on the left) to 4 (on the
right), with a step ∆r = 0.05.

Fig. 2. Singularity spectra f(α, β, γ) and their contour plot vs.
α and β for s = 0.

It turns out that minimal values of f obtained for s = 0
and for each r saturate quickly as q → −∞ and q → ∞.
The singularity spectra prove also to be concave functions
of any two exponents (from the triple α, β, γ), with any
of the filtering variables q, r, s being constant, except for
spectra f considered as functions of β and γ with s kept
constant. Dependences of some spectra on pairs of scaling
exponents are illustrated in Figures 2–6. Note that irregu-
larities of surfaces plotted in Figures 2, 4, and 5 are results
of numerical approximations and do not correspond to any
real effects. It is remarkable that, despite of the existence
of abrupt changes (first-order phase transitions) in depen-
dences of exponents α, β, γ on filtering variables q, r, s [4],
the spectra f , treated as functions of two of the triple in-
dices, are mostly concave for all values of respective pairs
of scaling indices. Obviously, in the case of the surface
shown in Figure 6, the function ψq,r,s(α, β, γ) possesses

Fig. 3. Singularity spectra f(α, β, γ) and their contour plot vs.
α and β for r = 0.

Fig. 4. Singularity spectra f(α, β, γ) and their contour plot vs.
α and β for q = 0.

for some ranges of q and r more than one minimum, and
the corresponding singularity spectra are not concave for
all values of β and γ.
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Fig. 5. Singularity spectra f(α, β, γ) and their contour plot vs.
α and γ for s = 0.

Fig. 6. Singularity spectra f(α, β, γ) and their contour plot vs.
β and γ for s = 0.

4 Multifractal measures for one-dimensional
Ising system

It has been proved that Gibbs distributions determined for
Ising systems can be treated for all nonzero temperatures
as multifractal measures, supported by discrete energy
spectra [6]. In the case of the zero-field one-dimensional
Ising model with periodic boundary conditions, the Gibbs

distribution is determined by [4]

p
(n)
i (K) =

1
Zn(K)

(
n

2i

)
e(n−4i)K , i = 0, 1, ...,Mn − 1,

(17)

where K = J/kBT is the reduced coupling (with J being
the nearest-neighbor interaction and T denoting tempera-

ture), n is the total number of spins, Zn(K) =
Mn∑
i=1

p
(n)
i (K)

denotes the partition function, and Mn = n/2 + 1 is the
total number of energy levels. As has been shown, the
probabilities (17) display complex scaling properties with
ᾱmax →∞ as n→∞ [7]. Since, for Ising systems, length
scales are all equal [6], i.e., `i = 1/Mn, i = 1, 2, ...,Mn,
and thereby the singularities γi are all identical [4], scal-
ing properties of the probabilities (12) can completely be
characterized by two kinds of exponents αi and βi. Ac-
cordingly, the generalized partition function for the one-
dimensional Ising model can be written as

Γn(q, r) =
Mn∑
i=1

[ p(n)
i (K)]q `βir (18)

with ` = e−n. To determine the indices αi and βi, one has
to find probability scales `i, determined by the relation
p

(n)
i (K) ∼ `αii . This can be done by applying the numeri-

cal procedure described in Section 2. Then, the exponents
α and β can be expressed as functions of q, and r, using
a reduced version of equations (2–6), i.e., by applying the
double Legendre transformation:

σ(q, r) = min
α,β

[ψq,r(α, β) ], (19)

ψq,r(α, β) = αβq + βr − g(α, β), (20)
{α}{β} = ∂qσ(q, r), (21)
{β} = ∂rσ(q, r), (22)

where σ(q, r) and g(α, β) are given be the relations
Γ (q, r) ∼ `σ(q,r) and N(α, β) ∼ `−g(α,β), respectively,
with N(α, β) being the number of pairs of indices αi ∈
[α, α+dα], βi ∈ [β, β+dβ], and {α}, {β} denote functions
α(q, r), β(q, r), satisfying the condition (19). By virtue
of (7), the singularity spectra for the measure (17) are
determined by

f(α, β) =
n

lnMn
g(α, β). (23)

In Figure 7, shown are the spectra f(α, β) as functions of
α, for particular values of r, while in Figure 8, the spectra
are plotted versus α and β. As it is seen, these spectra
display rather complicated forms with many maxima. It
follows that the function ψq,r(α, β) has many minima, and
that the minimum in the condition (19) refers to an abso-
lute minimum for given q and r. It should be noted that,
contrary to the measure consisting of binomial submea-
sures, in the case of the Gibbs measure (17), first-order
phase transitions occurring in dependences of the scaling
exponents on filtering variables [4], are reflected in vanish-
ing of f(α, β) at αc and βc, such that βmin < βc < βmax

and αmin < αc < αmax.
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Fig. 7. Singularity spectra f(α, β) vs. α for n = 100 and
for different, constant values of r, ranged from 0 (top) to 50
(bottom), with a step ∆r = 1.

Fig. 8. Singularity spectra f(α, β) and their contour plot vs.
α and β for n = 100.

5 Conclusions

The generalized multifractal formalism has been applied
to strongly inhomogeneous multifractal measures with

the Hölder exponent ᾱmax tending to infinity as `→ 0. In
contrast to the conventional multifractal formalism, the
generalized one allows us to characterize such complex
measures by three types (in general) of finite exponents,
yielding an adequate and complete description of scaling
properties of underlying local probabilities. The general-
ized singularity spectra are treated within the generalized
formalism as functions of two or three indices. It has been
shown that, due to complex structures of strongly inho-
mogeneous measures, their singularity spectra can exhibit
very complicated forms, as compared to spectra found for
typical multifractals.
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4. W. Jeżewski, Physica A 298, 419 (2001).
5. T. Horita, H. Hata, H. Mori, T. Tomita, S. Kuroki, H.

Okamoto, Prog. Theor. Phys. 80, 793 (1988); H. Hata,
T. Horita, T. Morita, K. Tomita, Prog. Theor. Phys. 80,
809 (1988); G. Broggi, B. Derighetti, M. Ravani, Phys.
Rev. A 39, 434 (1989); P. Paoli, A. Politi, G. Broggi, M.
Ravani, R. Badii, Phys. Rev. Lett. 62, 2429 (1989); M.A.
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